12 research outputs found

    Scientific cruise report Elisabeth Mann-Borgese SUMMIX-MESO

    Get PDF
    Objectives: It was intended to investigate the meso-scale and sub-meso-scale dynamics of the upper layers (upper 80 m) in the central Baltic Sea, using towed instruments and acoustic profilers, to better understand the physical conditions for cyanobacteria blooms. Under optimal weather conditions, we intended to carry out 10 one-day quasi-synoptic surveys by cruising in large meandering patterns (see fig. 1) covering areas of 15 X 15 nautical miles or 8 X 8 nautical miles, depending on the survey mode, see below. This cruise was the meso-scale component of the two-ship SUMMIX experiment together with RV Meteor (Physical and biochemical exchange-, mixing- and transformation processes in the central Baltic Sea during summer stratification and their controls on the cyanobacterial summer bloom) which was intended to be located at a fixed position nearby RV Elisabeth Mann Borgese in order to survey the water column in high vertical, spatial and parameter resolution, including biogeochemical experiments on board. In addition to the physical parameters, also vertical and horizontal zooplankton net tows as well as water samples taken by CTD bottles were planned

    North Atlantic Summer 1983 : NOA '83

    Get PDF

    High-resolution observations in the Western Mediterranean Sea: The REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Sea west of Sardinia Island (Western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 gliders, time series were available from moored instruments, and information on Lagrangian flow patterns were obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over four orders of magnitude from O(101 m) to O(105 m), and the time series from the moored instruments cover a spectral range of five orders from O(101 s) to O(106 s). The objective of this article is to provide an overview of the huge data set which is utilized by various ongoing studies, focusing on (i) sub-mesoscale and mesoscale pattern analyses, (ii) operational forecasting in terms of the development and assessment of sampling strategies, assimilation methods, and model validation, (iii) modeling the variability of the ocean, and (iv) testing of new payloads for gliders

    A view of the Canary Basin thermocline circulation in winter

    Get PDF
    During January and February 1989 the recirculation of the subtropical gyre in the eastern North Atlantic was surveyed with a three-ship experiment. The analysis of hydrographic measurements and velocity data from a shipboard acoustic Doppler current profiler reveals the synoptic-scale circulation patterns and water mass distributions in the Canary Basin. The geostrophic transport stream function estimated with a horizontally varying reference level of no motion highlights the major currents in three layers representing the vertical structure of the horizontal circulation. The classical circulation scheme is shown by the stream function in the upper 200 m: the Azores, Canary, and North Equatorial currents. Unlike the deep-penetrating Azores Current, the Canary Current and the North Equatorial Current are restricted to the upper 200 m. Both carry North Atlantic Central Water along the water mass boundary with South Atlantic Central Water. South Atlantic Central Water flows through the passage between the Cape Verde archipelago and Africa via narrow currents into the area north of 14.5°N. At the southern edge of the subtropical gyre we identify an eastward flow of Antarctic Intermediate Water between 700 and 1200 m

    Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models

    No full text
    The ventilation of the Baltic Sea deep wateris driven by either gale-forced barotropic or baroclinic salt water inflows.During the past two decades, the frequency of large barotropic inflows(mainly in winter) has decreased and the frequency of medium-intensity baroclinic inflows(observed in summer) has increased. As a result of entrainment of ambient oxygen-rich water,summer inflows are also important for the deep water ventilation.Recent process studies of salt water plumes suggest that the entrainmentrates are generally smaller than those predicted by earlier entrainment models.In addition to the entrance area, the SÅ‚upsk Sill andthe SÅ‚upsk Furrow are important locations for the transformation of water masses. Passing the SÅ‚upsk Furrow, both gravity-driven dense bottom flows and sub-surface cyclonic eddies,which are eroded laterally by thermohaline intrusions,ventilate the deep water of the eastern Gotland Basin.A recent study of the energy transfer from barotropic to baroclinicwave motion using a two-dimensional shallow water model suggests thatabout 30% of the energy needed below the halocline for deep water mixingis explained by the breaking of internal waves.In the deep water decade-long stagnation periods with decreasingoxygen and increasing hydrogen sulphide concentrations might be caused by anomalously largefreshwater inflows and anomalously high mean zonal wind speeds. In differentstudies the typical response time scale of average salinity was estimated tobe between approximately 20 and 30 years.The review summarizes recent research resultsand ends with a list of open questions and recommendations
    corecore